Resultant matrices and inversion of Bezoutians
نویسندگان
چکیده
منابع مشابه
Fast Fraction-free Triangularization of Bezoutians with Applications to Sub-resultant Chain Computation
An algorithm for the computation of the LU factorization over the integers of an n n Bezoutian B is presented. The algorithm requires O(n 2) arithmetic operations and involves integers having at most O(n log nc) bits, where c is an upper bound of the moduli of the integer entries of B. As an application, by using the correlations between Bezoutians and the Euclidean scheme, we devise a new divi...
متن کاملHybrid Sparse Resultant Matrices for Bivariate Polynomials
We study systems of three bivariate polynomials whose Newton polygons are scaled copies of a single polygon. Our main contribution is to construct square resultant matrices, which are submatrices of those introduced by Cattani et al. (1998), and whose determinants are nontrivial multiples of the sparse (or toric) resultant. The matrix is hybrid in that it contains a submatrix of Sylvester type ...
متن کاملMultivariate subresultants using Jouanolou’s resultant matrices
Earlier results expressing multivariate subresultants as ratios of two subdeterminants of the Macaulay matrix are extended to Jouanolou’s resultant matrices. These matrix constructions are generalizations of the classical Macaulay matrices and involve matrices of significantly smaller size. Equivalence of the various subresultant constructions is proved. The resulting subresultant method improv...
متن کاملFast Computation of the Bezout and Dixon Resultant Matrices
Efficient algorithms are derived for computing the entries of the Bezout resultant matrix for two univariate polynomials of degree n and for calculating the entries of the Dixon–Cayley resultant matrix for three bivariate polynomials of bidegree (m, n). Standard methods based on explicit formulas require O(n3) additions and multiplications to compute all the entries of the Bezout resultant matr...
متن کاملQuaternionic Matrices: Inversion and Determinant ∗
We discuss the Schur complement formula for quaternionic matrices, M , and give an efficient method to calculate the matrix inverse. We also introduce the functional D[M ] which extends to quaternionic matrices the non-negative number |det[M ]|. 1. Introduction. Much of the spectral theory of complex matrices does not extend to quaternion matrices without further modifications [1, 2, 3]. In par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2013
ISSN: 0024-3795
DOI: 10.1016/j.laa.2012.08.021